A Novel circuit of SRAM Cell Against Single-Event Multiple Effects for 45nm Technology
نویسندگان
چکیده
As CMOS technology down sized into double digit nanometer ranges, variations are a serious concern due to uncertainty in devices and interconnect characteristics. The single event upset (SEU) is changing the state of a memory cell due to the strike of an energetic particle. The single event multiple effects are likely to increase in nanometer CMOS technology due to reduced device size and scaling of power supply voltage.SRAM cells are sensitive to radiation induced hazards. Therefore, designing a reliable novel SRAM cell is an important challenge against SEU. In this paper, the proposed SRAM cell that provides a better features than their recent proposed SRAM cells. The simulation results and analysis represent that the proposed SRAM cell exhibits the high robustness against single event multiple effects (SEMEs). Moreover, the proposed SRAM cell successfully reduced the power consumption by 41% and write delay by 2% in comparison with the existing radiation-hardened SRAM cells at the cost of circuit complexity. The process corner analysis displays the comparison of power and delay of the proposed and existing SRAM cells. It shows that the proposed memory cell consumes less power than previous memory cells.
منابع مشابه
Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملDesign and Analysis of a Novel Ultra-Low Power SRAM Bit-Cell at 45nm CMOS Technology for Bio-Medical Implants
Bio-Implantable Microsystems such as the cardiac pacemaker, retinal and neural implant provides substitute for a missing biological part, support an impaired biological structure or even upgrade the existing biological system. These microsystems require ultra-low power miniature integrated circuit technology for long term reliable operation. For energy constraint applications like the implantab...
متن کاملCharacterization of 9 T SRAM Cell at Various Process Corners at Deep Sub - micron Technology for Multimedia Applications
In the past decades CMOS IC technologies have been constantly scaled down and at present they aggressively entered in the nanometer regime. Amongst the wide-ranging variety of circuit applications, integrated memories especially the SRAM cell layout has been significantly reduced. As it is very well know the reduction of size of CMOS involves an increase in physical parameters variation, this i...
متن کاملLow Leakage Asynchronous PP based Single Ended 8T SRAM bit-cell at 45nm CMOS Technology
Low power SRAM memory designs has become challenging for portable device applications. Semiconductor/ VLSI industry growth has exponentially demanding low leakage power SRAM designs for high performance chips and microprocessors. To get optimized standard cell memory design for battery operated devices at deep sub micron CMOS technology, a low leakage Asynchronous 8T SRAM is proposed. In this p...
متن کاملCell Stability Analysis of Conventional 6t Dynamic 8t Sram Cell in 45nm Technology
A SRAM cell must meet requirements for operation in submicron/nano ranges. The scaling of CMOS technology has significant impact on SRAM cell -random fluctuation of electrical characteristics and substantial leakage current. In this paper we present dynamic column based power supply 8T SRAM cell and comparing the proposed SRAM cell with respect to conventional SRAM 6T in various aspects. To ver...
متن کامل